Distribution of geometric sequences modulo 1

Hajime Kaneko

Abstract. Let ||£a™|| denote the distance from £a™ to the nearest integer.
In this paper we obtain a new lower bound for limsup,,_, . [|{a"|| if a is an
algebraic irrational number whose conjugates have moduli greater than 1.

1. Introduction

Weyl [13] proved that an arithmetic progression is uniformly distributed modulo
1 if and only if its common difference is irrational. Moreover, it is known that a
sequence (P(n)),, where P(X) € R[X], is uniformly distributed modulo 1 if
and only if P(X) — P(0) € Q[X]. On the other hand, for geometric progressions
no criteria of uniform distribution modulo 1 have been known so far.

In this paper we estimate the maximal limit points of the sequence
([l€a™|)se, where £ is a nonzero real number, « is an algebraic number with
a > 1, and ||z|| denotes the distance from the real number x to the nearest inte-
ger.

Maximal limit points are known if « is an algebraic integer whose conjugates
different from « have absolute values not greater than 1. For such an «, if its
conjugates different from a have absolute values strictly less than 1, « is called
a Pisot number. Otherwise « is called a Salem number. Hardy [9] proved for
algebraic o > 1 that lim,_, [[€a™|| = 0 for some nonzero ¢ if and only if « is a
Pisot number. Dubickas [6] proved for algebraic az > 1 that

: : ni| _
Inflim sup [[ga”| = 0
if and only if & is a Pisot or Salem number. It is a natural problem to determine
the value
E(a) ér;% limsup ||{

n—oo

“l

in the case where « is neither a Pisot nor Salem number. We denote the length of
a polynomial C(X) = 31" ;X" € R[X]| by L(C(X)) = >i", |ei|. Let P(X) be
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the minimal polynomial of a. We denote the reduced length of a by
()= inf L(P(X)B(X
(@) = , ot L(POOB(X))

where
'={BX)=by+b0 X+ - 4+b, X" eR[X]| by =1 or by, =1}.
Dubickas [6] proved that

1 1
£(@) 2 max {L<P<x»’ zz<a>} 1)

if « is neither a Pisot nor Salem number. If & = p/q, where p and ¢ are integers
with p > ¢ > 2 and ged(p, ¢) = 1, the inequality (1.1) implies

()%

Dubickas [6] further obtained

()3

where F; is defined by Mahler function as follows:

1— (1= X2, (1-x2
Ei(X) = I;IXO( ) (1.4)

The inequality (1.3) is sharper than (1.2) since

1 1
Ip, <Q) L
p p pP+q

_or—a [ (AT (L7
- 2q(p+q){1 (1 P2>H<1 p2i>}>0.

The main purpose of this paper is to generalize the inequality (1.3) to the
case of irrational @ whose conjugates have absolute values greater than 1.

Y

2. Main results

First we give a lower bound for £(«) in the case where « is a quadratic irrational
number. The theorems in this section give improvements of the inequality (1.1).

THEOREM 2.1. Let o > 1 be a quadratic irrational number with the minimal
polynomial az X%+ a1 X + ag € Z[X], where az > 0 and ged(as, a1, a0) = 1. Let as
be the conjugate of a. Assume that ag > 1 and that

5—1
oz71+oz2_1<L.

< 21
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Then

where

E(X,)Y)

REMARK 2.2. Let a be a quadratic irrational number satisfying the assumptions
of Theorem 2.1. By Dubickas’s formula of reduced length in [5], we get

&(a)

Y

max{ 1 1 } 1
L(P(X)) 2laol f ~ L(P(X))
1 1

Wl—l—a—l—l—a;l—i—a—la;

T-

By using Lemma 2.1 at the end of this section, we can rewrite Ea(a™", a5 ') as an
alternative series. Thus we get

-1 -1 —2_ -1 -1 _ -2
Eya ™oy )>1l—a " —a oy —ay”,

and so
1 1 1
WEz(a_l,agl) > max {L(P(X)) , 2|ao|} .
Now we give an example. Put o = 44 /2 and ay = 4— /2. By the inequality
(1.1) we get
E(4+V2)>0.0434. ...
Since a and «y satisfy the conditions in Theorem 2.1, we have

E(4+V?2) >0.0581....

We note that we calculate the value Eo(a™!, ;') by using Lemma 2.1.

On the other hand, for any a > 1 we have

1
<
€)= 50—

(2.2)

(see Section 5). By (2.2) we have
E(4+V2)<0.113....

Next we consider the case where « is an algebraic number with arbitrary
degree. In what follows, we write the symmetric homogeneous polynomial of degree
m as

pm(X1, Xa, ..., X,) = > XPXpeX) (2.3)

§1,89,.ryir >0
i1Figt-+ip=m
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We note that (2.1) is equivalent to

V6 -1 -1 -1

0< pm_,_l(ofl,a;l) < D) pm(a”  ay) (2.4)

for all m > 0.

In order to estimate £(a) in this case we need a stronger assumption than
that of Theorem 2.1.

THEOREM 2.3. Let o be an algebraic irrational number with |« > 1 and
let a1(= a),aa,...,aq be the conjugates of a. Denote the minimal polynomial
of a by P(X) = agX? + ag 1 X1 + .- +ay € Z[X], where ag > 0 and
ged(ag, ag—1,--.,a0) = 1. Assume

lai| > 1 (i=1,2,...,d)

and
1
0< pmii(a ozt a;h) < ipm(afl,agl,...,agl) (m=0,1,...). (2.5)

Then

1

E(a) > —Eala a5t agt),

|aol

where
d

1
Ea(X1,Xs,.... Xa)=> | ] X _-x X{EN(X5)

i=1 1<j<d
J#i

and Ey is defined by (1.4).

REMARK 2.4. Let a be an algebraic number satisfying the assumptions of The-
orem 2.3. By the same way as in Remark 2.3, we have

1 1
lao| 1+p1(a*1,a2_1,...,a671)
and
Egj(a oyt ety > 1—palatag !, o agh).
Thus we get
1 1 1
—FEq(a Y ast a0t > —_—, -
g P10 e ) IR TR0 31(a)

‘We now set

prn(X1, Ko, Xg) =0 (—d+1<m < —1). (2.6)
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By the equality

0o d
—1 —1 —1 Xn X7 _
pn(a™ ag o) a; X' = ag,
n=—d+1 1=0
we get
-1 -1 -1 -1 -1 -1
aopm(a™ ", ag ooy ) Faipmoi(a o, 0y )

+ o agpmeala oyt o) =0 (m=1,2,...).  (2.7)
By using (2.7) to check the inequality (2.5), we obtain the following:
COROLLARY 2.5. Let « be an algebraic irrational number with |a| > 1. Denote
the minimal polynomial of a by P(X) = agX?® +aq 1 X' +--- +ag € Z[X],
where ag > 0 and ged(ag, ag—1,.-.,a9) = 1. Assume

a; >0 (1<i<d)
and
ag < —2a1 — 2a9 — -+ — 2aq4.

Then

E(a) >

WEd(a_l,a517 cagh).

We estimate €(a) in the case where a = 7+/2 — 7. The minimal polynomial
of ais X3 +21X2 + 147X — 343. The inequality (1.1) implies

E(TV2—17)>0.00195....

Since « satisfies the conditions in Corollary 2.5, we have

E(TV2—T7)>0.00242.. ..

We note that we calculate the value Eg(a™', a5 ", ... ,a;l) by using Lemma 2.1.

We can apply Theorem 2.3 to the case where o > 1 is a quadratic irrational
number whose Galois conjugate is less than —1.

COROLLARY 2.6. Let @ > 1 be a quadratic irrational number with the minimal
polynomial az X?+ a1 X + ag € Z[X], where az > 0 and ged(ag, a1, a0) = 1. Let as
be the conjugate of a.. Put ( =1 if a < |ag|, otherwise put ( = —1.

Assume ay < —1 and

_ _ 1 _ _ )
0 < pms1(Ca vaQQ 1) < §Pm(Ca 1,§a21) (i=0,1).
Then

1 Ex(Ca™t Cazt).

E(a) > —
lao|
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In the rest of this section we determine the Taylor expansion of the function
Eqi(Xy,Xs,...,X4) at the origin. The calculation was obtained by Dubickas [6] if
d=1.Let A, (n=0,1,...) be finite words given by 49 =2, A; =211 and

Ap = Ap 1 An_2An 2.

Let w = (w,,)52 be a sequence defined by
W = A1AOAOA1A1A2A2 PN AnAn ce
- 21,1,2,2,2,1,1,2,1,1,... .
Then we define the finite words ~,, (n =0,1,...) and the sequence e = (e,)5, as
follows:
[0 ifw,=1,
=Y 0 ifw, = 2;

e = 17’705_1771717’727_17’7371774a_1,---
— 1,0,-1,1,-1,0,1,0, -1, .. ..

LEMMA 2.1. The function Eq(X1,Xa,...,Xq) is represented as

Ey(X1, Xo,...,X4) = Zpi(Xl,Xg, . Xa)es. (2.8)
i=0
Proof. Since
El(X) _ Z(_1)1')(1110-"-11)1-‘r“‘-i-wif17
i=0
we have
[e%S) d
_ i 1 wotwi+-Fw;—1+d—1
Eq(X1, Xo,..., Xa) = Z(—l) Z 11 ij
1=0 j=1 1<k<d
ks
= Z(_l)ipw()"r'wl"r“'-‘rwifl(XlaX27'"aXd)
i=0
= ZPi(XlaXQa--~7Xd)€i~
i=0
Note that we use Lemma 3.1 to check the second equation. O

3. Preliminaries
We define the integral part and the fractional part of a real number.

DEFINITION 3.1. Let x be a real number. Then the integer u(x) and the real
number £(z) are uniquely determined by x = u(z) 4+ e(x) with —1/2 < e(x) < 1/2.
We call u(x) the integral part of x and e(x) the fractional part of x.
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We note that u(x) is one of the nearest integers to x and that ||z|| is given
by ||z = [e(x)]-

If « > 2 is a rational integer, the fractional part £(£a™) can be denoted by
the a-ary expansion of £&. Mahler [11] considered the ”3/2-ary” expansion of real
numbers to study the distribution of the geometric progressions whose common
ratios are 3/2. In this section we construct the ”a-ary” expansion for an algebraic
number a.

At first, we check the following:

LEMMA 3.1. Let the symmetric homogeneous polynomial p,, (X1, Xa,..., X,) be
defined by (2.3). Then

T

1 m-+7r—
i=1 1§_;7’£§T ? J

Proof. We denote the right-hand side of (3.1) by p/,,. We consider the polynomial
of Y defined by

T o0

o) =T[0- xS gy =Y I

1=1 m=0 1=1 1<j<r
J#i

Since
g(X ) =11 <i<7)
and the degree of g(Y') is at most  — 1, we have g(Y') = 1. Thus we conclude that

Zplw ﬁl—XY sz X1, Xo,..., X,)Y"
i=1
O

We define p,, (X1, Xs,...,X,) also for a negative integer m by using (3.1).
We note this definition coincides with (2.6) for —r+1 <m < —1.

Let a be an algebraic number and let P(X) = agX? 4+ ag_1 X9t + - +
ap € Z[X] be its minimal polynomial. We denote the conjugates of a by ay(=

a),as, ..., aq. In the rest of this section we assume that |o;| > 1 (1 =1,2,...,d).
Let € be a nonzero real number. We define the sequence (s,(£))52_ . by

s$n(€) = agu(éa™) + ag_1u(€a 1) + - + apu(§a " Y).
It is easily checked that

1 1¢
[5n(§) < SL(P(X)) = §Z|ai|-
1=0

In fact, s,(£) can be rewritten as

$n(§) = —age(§a™) — ag_1e(§a™" ) — -+ — age(§a™ ).
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Moreover, Dubickas [6] proved that the sequence (s, (£))M

e _ o 1s not periodic for
any integer M.

PROPOSITION 3.1. The integral part u(€a™) and the fractional part e(£a™) are
given by

mo Ll OOE (o, « ad)Si
U(fOl ) - aq part p’L( s G2y ey d)sl—"(g)
and

-1

respectively. In particular

1 00
é-an — a7d Z pi(a, ag,. .. 70[(1)57}—71(5)'

1=—00

Proof. We get

-1
1
- Z pi(a7 ag,. .. ,Oéd)Sifn(f)
ad
i=—00
- d
= —— Z pila, e, ..., 0q) Z ag—je(§a”™ ™" 77)
ad i=—00 7=0
1 0 min{d,—i}
= —— Z e(€a™™) Z pitj—d(a, oo, .., aq)a;.
L =0
Since
pdla,az, ... aq) = (=) a"lagt ot
and since
min{d,—i}
Z Pi+j7d(aa Qg, ... 7ad)aj
j=0
min{d,—i}

= E pivj—dala,az,. .. ag)a; =0
j=—d+min{d,—i}

for ¢+ < —1, we conclude that

-1
aid Z pila,ag,. .. aq)si—n (&) = e(&a™).

1=—00

By the same way as above we can check the representation of u({a™). U
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COROLLARY 3.2. Let & be arbitrary real number. Then

1 &
E(fan) = _;O Zpi(a_17 a2_1, B a(;l)s—i—n—d(f)-
=0

Proof. Since

1 1 —a; tagt g
—pi(a,02,...,aq) = *H H ﬁ 04§+d !
d @d =1 1<h<a Y Qp
Th#£L
1 - -1
= _7p*17d(a , Oy aad )a
we obtain
1 —d
ea™) = — > pilayag,...,aa)si-n(é)
ad 1=—00
1 —d
= - Z p*i*d(a_ , Qg , (g )Szfn(éh)
ao 1=—00
1 o
= _%Zpi(a_laaz ) ,Oé; )s—i—n—d(g)'
=0

O

We end this section by introducing a property of the sequence w = (w,, )2,
defined in Section 2.

PROPOSITION 3.3 (Dubickas [6]). Let b = (b,)52, be a sequence with by, € {1,2}
which is not ultimately periodic. Then b satisfies at least one of the following:

1. For any N > 0, there exists an m > 0 such that
bti =w; (i=0,1,...,N);
2. There exist N > 2 and infinitely many m > 0 such that
bti=w; (i=0,1,...,N—1)
and

bman =2, wy =1 if N is even,
bman =1L, wy =2 if N is odd.
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4. Proof of the main results

Proof of Theorem 2.3. For simplicity we set

1 1 _
Mm:wpm(a Layt, eyt (m=0,1,...),

and

1
= —FElat ayt,. .. ,04(;1).

lao|

Take an arbitrary nonzero real number £. We put
tn=5_n—q(§) (n=0,1,...).
By Lemma 2.1 and Corollary 3.2

oo
Z Witirn
i=0

™| =

, = Z,Ufiez'~
i=0

Let
t = limsup [t,].

n—oo
We first consider the case where ¢t > 2. Since the sequence t = (£,)%2, is not
ultimately periodic, at least one of the words W,,, = t,m (-t +1 < m < t) or
W = —t,m (=t < m <t — 1) appears infinitely many times in t. If t contains
infinitely many W,,, for some m with —t + 2 < m < t or infinitely many W,, for
some m with —t < m <t — 2, then by (2.5)

oo
limsup ||| > tuo + (2 — s — Y tpi > po > 1.
Thus we may assume that W,,, with —t+2 < m <t and W,, with —t <m <t—2
appear in t only finitely many times.
Suppose that W_;, 1 appears infinitely many times in t. Then for every suf-
ficiently large n and for each m > 0,

Witngi + Pititntitr > =ty — (& — 2) g,

consequently
limsup [[€0”|| > tpo — (t — D — Y (pzi + (¢ — 2)p2iga).- (4.1)
n—oo i=1

The inequality (4.1) is true also in the case where W;_; appears infinitely many
times in t. Using (2.5), (4.1) and

Y < o — p2 + 13 — pa + e,

we obtain

lim sup [|£a”|| > 9.
n—oo
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In what follows, we assume that ¢ = 1. By the same way as above
limsup,,_, ||€a™|| > 9 if at least one of the following words appears infinitely
many times in t:

Uy=1,1; Up=—1,-1; U3 =1,0,1; Uy = —1,0,—1, V =0,0.

It suffices to prove the theorem in the case where these words appear in t only
finitely many times. As a result, there exists an M > 0 such that

tvstyvst, tvye, ... =1,0,...,0,—-1,0,...,0,1,0,...,0,—1,...,
—— —— N —
o ] xro
where
xn, €{0,1} (n=0,1,...).

Put y, = 1 + x,. Note that the sequence y = (y,)52, is not ultimately periodic
and

oo

lim sup HSO‘HH > Z(_1)ilu’ym+ym+1+"'+ym+i71 (m =0,1,.. -)7
e i=0
oo
Y = Z(_l)luw0+w1+-"+wi71'
1=0

We apply Proposition 3.3 to y. If y satisfies the statement 1, then
limsup,, o, ||€a™|| > ©. Otherwise, we choose N and m satisfying the statement
2 of Proposition 3.3. Put

w=wy+w+ - +wWN-_1.
Then by (2.5) we have

limsup [[§a” (| = ¢ > pi4w — Bo4w — P4wto = 0,

n—00
where
v — { WN41 if V is even,
YmtnN+1 if N is odd.
O

Proof of Corollary 2.6. Since Ca and its conjugate (aq satisfy the assumptions of
Theorem 2.3, we have

1
WEQ(Ca_l,Cagl).

Ela) = E(Ca) >

O

Proof of Theorem 2.1. We use the same notation as in the proof of Theorem 2.3.
First we assume ¢ > 2. Since

Itn] = |aze(€a™™) + are(§a™ ") + age(§a™ ") > 2
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for infinitely many n, we have
1
limsup |[[£a”|| > —————————— > — > 9.
o e o el ™ faol
In what follows, we suppose that ¢t = 1. By the same way as in the proof
of Theorem 2.3, it suffices to check the case where the following words appear in
t = (tn)52, only finitely many times:
U, = ]-7]- ; Us = _1;_1; U3 = 130a1; Uy = _1a07_1;
Us = 1,0,0,1; Ug =—1,0,0,-1; U7 =0,0,0.
Consequently, there exists an M > 0 such that
tapstyrsts tarye, ... =1,0,...,0,-1,0,...,0,1,0,...,0,—1,...,
—— —— =
o) xrq xro
where
zn €{0,1,2} (n=0,1,2,...).

Suppose that z,, = 2 for infinitely many n. Then we may assume that

p2 < 2p3
since by (2.4)

limsup [[a”|| = ¥ = (po — p3) — (o — p2 + p3) = p2 — 2ps.

n—oo

Let (7,)52, be defined by the recurrence

147, + T2 + 73
=1, =(V/5-1 —1.
7 1 = (VE—1) 1+ 7, + 72
Then (7,)52, is a positive decreasing sequence, which converges to 7 = 0.25093. ..

as n tends to infinity. Put

p=max{a ', a;'}, ¢=min{a" ay'}.
Now we verify that
q < 7p, (4.2)
checking that
q<7p (n=0,1,...) (4.3)

by induction on n. The inequality (4.3) is clear if n = 0. Suppose n > 1. By the
induction hypothesis we have

2
0<2us—p2 = N2(2p—1)+mq3

21+Tn+'rg+7'g 1
Ha | <P 1+ 7, +72

IN
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and so
1+Tn+T,2L
p 2 ;
20+ 1+ 72+ 73)
< V5 —1 1—|—7‘n+7'5
4 = 2 20+ 1 +72+73)

Hence we obtain ¢ < 7, 11p. Moreover, we have the following:

Vh—1 1+7+72
> = 0.49405. . .; 44
2 =P= 20+ 747124 73) ’ (4.4)
q < 0.12307.... (4.5)

Since (z,,)22, is not ultimately periodic, there exist infinitely many n > 0 such
that x, = 2 and z,+1 < 1. Thus by (2.4)

limsup [[§a”(| > po — pz + min{pa — ps, s — 6}

Since
2 2 5
pa—2ps+pe > (1=2p+p°)us — 7|a0|q
7—3V5 2q
> - Ha
2 1+7 14724734774
> 0,
we get

limsup||§a™|| =¥ > pa — 2u3 + pa + ps — 246

n—oo
f 3
> (1-2p+p*+p°—2p*)po — mtf’

> 0.

In what follows, we suppose that x,, € {0,1} for all n. We may assume that
the sequence y = (y,)22, where y, = 1 + x,,, satisfies the second statement of
Proposition 3.3. Let N, m, w and v be as in the proof of Theorem 2.3. Then by
(2.4)

limsup [|£a™|] =¥ > pr14w — Bo4w — Hitw+o
n—oo
and so we may assume that v = 1 and that 2usq4 > p14w- Since (fnt1/1n)5%0

is a decreasing sequence, we see that 2us > ps. Therefore the inequalities (4.2),
(4.4) and (4.5) hold.



14 Hajime Kaneko

Assume that N is odd. Then by (2.4)

n—oo

3 i
limsup [[£a”|| = ¢ = p(1 + w) = 2u(2 + w) + Z(*l)iﬂ <2 +w+ ZU)N+1+k>

i=0 k=0
+ Y (=) <2 +w+ ) ym+N+2+k> ;
i=0 k=0
where
pu(h) = pn

for h > 0. Since y,, € {1,2} for each n, it is easy to check

3 ;
> (1) p (2 +w+ Y ym+N+2+k>

i=0 k=0
> p(d+w) — pb+w) + p(7+w) — w8+ w).

Since wy = 2 and since w is a concatenation of the words As = 2,1,1 and
A3 =2,1,1,2,2, we have

(uUV+1a“UV+27UUV+37UUV+4) € {(17172a1)7(17112a2)7(271a1»2)7(272a171)}
Thus we get

S0 (2 +w+ ZwN+1+k>

i=0 k=0
> p(d+w) — p(d+w) + p(6 +w) — p8+w).
Using (4.4), (4.5), and w > 3, we obtain
limsup || £a”|] =4

n—00

5 4g*tw
> (1—=2p+2p° —2p" +p° +p° =2 )u(1 +w) — ——

|ao
8
5—1 4g?tw
> (f ) p(1 4wy~ 0,

2 |ao

Next, we consider the case where N is even. Then by (2.4) we have

3 7
limsup |[éa”|| = ¢ > p(1 +w) = 2p(2 +w) + Y _(=1)'p <2 +w+ szv+2+k>

n—eo i=0 k=0

3 i
+ Z(_l)iﬂ <2 +w+ Z ym+N+1+k>

=0 k=0
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and

Z(_l)i H (2 +w+ Z ym+N+1+k>

i=0 k=0
> pd+w) — pd+w) + p(7+w) — p(8+w).
Since wy = wyy1 = 1, we get
(W2, WN+3, WN 4, WNt5) € {(2,1,1,2),(2,2,2,1)},

and so

3 i
Z(—l)i i (2 +w+ ZwN+2+k>

k=0
> pd+w) — pd+w)+ pu(6+w) — p(8+w).
Hence we obtain

limsup |[£a” || > 1.

n— oo

5. Geometric sequences with small fractional parts

Koksma [10] proved that, if any real number « > 1 is given, the sequence (£a™)%2,
is uniformly distributed modulo 1 for almost all £. Similarly, if any nonzero real
number £ is given, the sequence (£a™)$2 is uniformly distributed modulo 1 for
almost all & > 1. In this section we study the exceptional set of Koksma’s Theorem.

Boyd proved the following:
THEOREM 5.1 (Boyd [3]). Let 6, M be arbitrary positive numbers. Then the set
of real numbers o > M such that

N ] [ —
e ~ (a—-1)(a-3)

for some & with |§ — 2| < § is uncountable.

It is known that there exist only countable pairs (£, ), where £ # 0 and
«a > 1, satisfying
. n 1
hrrlnjot;pllﬁa | < 30+ a)
(see for instance [2, p.95]).

We now consider the exceptional set of Koksma’s Theorem for a fixed o > 1.
Tijdeman [12] proved for any o > 1 that there exists a nonzero & such that
{€a™} = &a™ —[€a"] and [a™] < 1/(a—1)(n =0,1,...) is the largest integer not
greater than £a”. By the same way as Tijdeman we can prove the existence of £
such that ||€a™]| < 1/(2a —2)(n =0,1,...). We note that Dubickas [4, 7] obtained
sharper estimation.
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Next, we consider the exceptional set for a fixed nonzero &.

THEOREM 5.2. (1) Let & be a nonzero real number. Then for arbitrary positive
numbers § and M, the set of real numbers a with o > M satisfying

146
limsup [[¢a”|| <
(0%

n—oo 2
is at least countable.
(2) Let € be a nonzero real number. Then for arbitrary positive numbers §

and M, the set of real numbers a with o« > M satisfying
1496
lim sup [|€a”|| < 1o
@

n—oo

is uncountable.

Proof. We may assume £ > 0. First we prove the statement (1) of the theorem.
Take any positive integer R with R > max{12,§,§_1/2}. We define the sequence

(2n)nZ0 by
21 = R?, zpy1 = (€YD (=12, ).

Since R > &, we can easily check by induction on n that

zn > R*HL
We put
/gn = g*l/nZ}l/n
Since
. w1
i — €Yl < L
we have
-1
1 - - % n—1
|ﬂn - /6n+1| S 55 ! (Z /6n+16n ) . (51)
i=0

We denote the right-hand side of (5.1) by ¢,. Since
1
Gn < €A D)TIRT (5.2)
the sequence (5,)22; converges. Let o = lim,,_, oo 8. Using (5.2) and

Brs1 = Bn(l — qulqn) > Bn(1 - Rilqn)v

we obtain

n—1

o]l <1 - %6*@' + 1)1Ri1)

i=1

é——lRQi:l_[Q (1 _ ;g_li_lR_i> .

B

\%

v
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In what follows, C7,C5, and C3 denote positive constants depending only on &.
Then

B, > ¢ R*(1 - CLR™?).

By considering only the case where R is sufficiently large, we may assume that

1
01R72 S 5
Thus
Int1 S o Bl B _
I Bag1doro BhioBnit
1 —n
< R (1-CiR7)7! (1 - 5g*lRi?(n + 1)1>
< ERP1+20iR)(L+ 'R 2+ 1)7H)"
< ER2(1+201R7)(1+267'R7?)
< 6(R72
and so

o = Bl <3 i < (1+126R)q,

i=0
for any n > 1. Therefore
n—1
Sa™ = zn| < Ela—Bal > alBrT
i=0

Sice B
Do BBt

1
< 553*2(1 +126R7?)(1 — C1R™?)

1
< JER(1+ R

< %(1 +126R3?)

IR
D i

—1 . —1—3
Yo BB

for n > 1. We may assume that

1 1
§£R72(1+02R72) < 5
Hence
_ _ 1 1
ER7? -« 1|:TRQ|§0¢—21| <TR2’
and so
14+ CsR™2
n
— | < =2

Since z,, is a rational integer, the statement (1) was proved.
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Next we prove the statement (2). Take any sufficiently large integer R. Let
P = (pn)22, be a sequence with p, € {0,1}. We define the sequence (z,(p))5,
by

z1(p) = R2>
i (®) = €7 (@) £ p, (n=12,..).

Then we have

§7M 0 (p) D/ — 2 (p) < 1.
By the same way as in the proof of statement (1) we can check that the sequence
(6172, (p) /™), has a limit a(p) and that
1+6 1
" —2zn < —< -
[€a(p)" — zn(p)| < —— <5
This implies the statement (2). In fact, if the sequences p and p’ are different,

then a(p) # a(p’). O

In contrast with Tijdeman’s result and Theorem 5.2, the following theorem
implies that, if & > 1 (resp. £ # 0), then the set of nonzero £ (resp. a > 1)
satisfying a stronger inequality is at most countable.

THEOREM 5.3. (1) Let a > 1. Then the set of real numbers £ satisfying
1
2c0 + 2

limsup ||€a”|| < (5.3)
n—oo

s al most countable.

(2) Let & be a nonzero real number. Then the set of real numbers o with o > 1

satisfying

1
limsup ||€a”]| <

4

18 at most countable.

Proof. If £ satisfies (5.3), we have
[u(€a™") ~ au(a™)| = |e(6™") ~ ac(ga)] < 3

for all large n. Thus we get
u(€a™) = u(au(€a™)).

It is clear that the set of the sequences (yn)5>, of rational integers satisfying
Yn+1 = u(ayy,) for all sufficiently large n is countable. Thus the statement (1) was
proved. In fact, if £ # &', then the sequences (u(&a™))22, and (u('a™))2, are
different.

Similarly, for the proof of the statement (2) it is sufficient to check the fol-
lowing: If o satisfies (5.4), then

u(fan+1) —u (6_1/"11,(60[”)("—"_1)/”)
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for all large n. Putting
uy, = u(éa™) and &, = e(€a’™),

we have

IN

é——l/nugln—i-l)/n‘ _ gan-‘rl‘ + |§—1/nu£ln+1)/n _ gan-&-l‘

|un+1
Enttl + an+1 1—e, —la—n (n+1)/n _ 1l.
Jr

Using the mean value theorem, we obtain

|un+1 -

IN

1
(1 . gngflafn)(nJrl)/n -1 {_:ngflo[fnnjL (1 . 55‘”571017”)1/”,
n
where 0 < § < 1. Hence we conclude that
1
1 — € mu( M < B

for all large n. O
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