
十進無限小数として定義した実数の四則演算
本書では，実数を十進無限小数として定義し，その順序や極限に関する性質を議
論しましたが，四則演算がその中で閉じてできることや，それが満たすべき性質
は，証明しませんでした．それをこのノートで証明します．本書で実数や，その大
小関係，絶対値の定義は与えたので，それに従います．示すべきことを，最初にま
とめておきます．

加法の定義 実数 a, bに対して，a+ bが実数として定まる．
加法の単位元の存在 実数 aに対して，a+ 0 = 0 + a = aが成り立つ．
加法の逆元の存在 実数 aに対して，a+ (−a) = (−a) + a = 0が成り立つ．
加法の逆元の一意性 実数 a, b が a + b = 0 または b + a = 0 を満たすならば，

b = −aである．
加法の交換法則 実数 a, bに対して，a+ b = b+ aが成り立つ．
加法と順序の関係 実数 a, b, c, dに対して，a ≤ bかつ c ≤ dならば，a+ c ≤ b+d

が成り立つ．
三角不等式 実数 a, bに対して，|a+ b| ≤ |a|+ |b|が成り立つ．
加法の結合法則 実数 a, b, cに対して，(a+ b) + c = a+ (b+ c)が成り立つ．
乗法の定義 実数 a, bに対して，abが実数として定まる（これを a · bとも書く）．
乗法の単位元の存在 実数 aに対して，a · 1 = 1 · a = aが成り立つ．
乗法の交換法則 実数 a, bに対して，ab = baが成り立つ．
乗法と順序の関係 実数 a, b, cに対して，a ≤ bとすると，以下が成り立つ：{

ac ≤ bc, c ≥ 0,

ac ≥ bc, c < 0.

分配法則 実数 a, b, cに対して，a(b+ c) = ab+ acが成り立つ．
乗法の結合法則 実数 a, b, cに対して，(ab)c = a(bc)が成り立つ．
乗法の逆元の存在 0でない実数 aに対して，実数 a−1が存在して aa−1 = a−1a =

0が成り立つ．
乗法の逆元の一意性 実数 a, bが ab = 1または ba = 1を満たすならば，b = a−1

である．

有限小数に対する和，差と積については，その定義と性質，とくに大小関係が演
算でどのように変わるかは知っているものとします．商だけは，有限小数同士で



行っても，結果は循環小数になる可能性があり，その場合は結果が有限小数に収ま
らないことに加えて，結果として得られた循環小数が「除法は乗法の逆演算」とい
う定義と一致することは確かめていないのが普通なので，既知としません．但し，
結果が有限小数になる場合についてはこれらの問題はなく，例えば，小数第 n位が
1で，それ以外が全て 0である小数が 10−n であることは認めて使います．
このノートでは，いくつか特殊な言葉の使い方をします．とくに，数とその表示
を区別する場面が多いので，注意してください．まず，a ≥ 0のとき [a]は aを超
えない最大の整数とし，a < 0のときは [a] = −[−a]とします．ここでの等号は記
号としての意味で，−0と 0は異なるものとしますが，数として見たときは −0 = 0

です．この記号の使い方は標準的ではありませんが，負の数を十進小数で表示した
ときの整数部分といえば，普通はこうしていると思うので，このノートの中ではそ
ういう規約にします．なお，少し細かいことですが，整数と言ったら，小数部分が
全て 0の無限小数表示に限ることにします．これにより，9. 99 · · · の整数部分は 9

ではなく 10になることに注意してください．次に，記数法としては常に十進法を
使うので，いちいち明示せずに十進無限小数を単に無限小数と呼びます．有限小数
も，あるところからずっと 0が続くと思えば無限小数なので，無限小数は有限小数
を含むとし，有限小数はあるところからずっと 0が続く無限小数のことを指すもの
とします．実数は，無限小数の集合に

[a].a(1)a(2) · · · a(j)99 · · · = [a].a(1)a(2) · · · (a(j) + 1)00 · · ·

という同一視（同値関係）を入れたものでした†1．この両辺は記号としては異なり，
演算を考えるときには区別した方が良い場面もあるので，無限小数としては区別し
ます．例えば，有限小数の四則演算の性質は既知としますが，有限小数として表せ
る実数に関して

0. 99 · · ·+ 0. 99 · · · = 1. 99 · · ·

は既知とはしません．「無限小数が等しい」とは，その全ての桁の数字が等しいこ
と，「無限小数が実数として等しい」とは，上の同一視の下では等しいこととし
ます．

†1 一つ目の表示で整数部分のある桁からずっと 9 が続く可能性もあり，そのときは整数部分は [a]− 1

に変更が必要です．これが議論に影響する場面はありませんが，こういうことが起こり得るときは，
脚注で指摘します．



注意. このノートの議論は，本書で定義したり，証明したことをできるだけ活用す
る方針で進めます．そのため，四則演算の定義としてはやや議論が曲線的に見える
かもしれません．それに不満を感じる場合は，有限小数の計算も含めて和から順に
操作的に定義して，その性質を証明した文献 [1]を参照してください．但し，この
文献は 0. 99 · · · のように，ある桁から 9 がずっと続く表現は使わないという立場
をとっているので，議論の仕方は少し異なります．

加法の定義

まず二つの無限小数の和を定義します．数の正負に関わらない議論をするので，
差も a− b = a+ (−b)として同時に定義されます．
無限小数 a = [a]. a(1)a(2) · · · に対して，小数第 n位以下を全て 0にしたものを

a←n = [a]. a(1)a(2) · · · a(n)00 · · ·

と書くことにし，さらにm < nに対して，小数第m位から小数第 n位以外を全て
0にしたものを

am←n = 0. 00 · · · 0a(m)a(m+1) · · · a(n)00 · · ·

と書くことにします．この記号を使うと a←n = a←m + am+1←n となります．
二つの無限小数 a, b に対して，数列 (a←n + b←n)n∈N を考えましょう．この
数列の各項は有限小数の和なので，定義は既に知っています．さらに，すべての
m,n ∈ Nでm < nを満たすものに対して

|a←n − a←m| = 0. 00 · · · 0a(m+1)a(m+2) · · · a(n)00 · · ·
= am+1←n

≤ 10−m
(1)

であることに注意すると，

|(a←m + b←m)− (a←n + b←n)| ≤ |a←m − a←n|+ |b←m − b←n|
≤ 2 · 10−m

となっています．これは (a←n + b←n)n∈N が Cauchy列であることを意味します．
本書で Cauchy 列が収束することを証明した定理 2.6.2 の証明で，ある無限小数



c, dが存在して，どんな大きな k ∈ Nに対しても，N ∈ Nを十分大きくとれば，全
ての n ≥ N に対して，a←n + b←n と cまたは dの小数第 k 位までは一致するこ
とが示されています（c = dの場合もあります）†2．さらにこの cと dは，実数とし
ては一致することも示されています．この cが定める実数を a+ bと定義すること
にします．この定義によると，無限小数 0. 00 · · · が加法の単位元であることは，有
限小数の演算の性質からすぐにわかります．

注意. Cauchy列の定義には an − aN が現れるので，一般の実数列に対しては，実
数の差が定義されるまでは Cauchy列も定義できません．しかし，有限小数の列が
Cauchy列であることの定義は有限小数だけを使ってできて，定理 2.6.2の a∞ を
作る議論と，「aNk

と a∞が小数第 k−1位まで一致する」ことを示すところまでは，
無限小数の演算を使わずにできるのです．一方で，定理 2.6.2の limn→∞ an = a∞

の部分は，実数列の極限の定義に an − a∞ が現れるので，いま定義した実数の差を
使ってあらためて考える必要があります．とくに，a+ b = limn→∞(a←n + b←n)

はまだ証明できていません．これは次節で議論します．

ここまでで定義したのは無限小数の和であって，実数の和ではないことに注意し
ましょう．実数は二通りの無限小数表示を持つ場合があるので，どちらを使っても
同じ実数が得られることを確かめなければ，実数の和が定義できたことにはなりま
せん†3．これを，次の命題で解決します．

命題 1. 無限小数 a1, a2, b1, b2 について，a1 と a2 は実数として等しく，b1 と b2

は実数として等しいとする．このとき，{ai + bj}2i,j=1 は全て同じ実数である．

証明. a1 + b1 と a2 + b1 が同じ実数であることを示します．b1 を b2 に変える場合
も，議論は同じです．実数 aが二通りの無限小数表示を持つとすれば，ある j ∈ Z
に対して

a1 = [a]. a(1)a(2) · · · a(j)99 · · · ,
a2 = [a]. a(1)a(2) · · · (a(j) + 1)00 · · ·

†2 異なる二つが必要なのは，定理 2.6.2 の証明の後半の場合だけです．しかし，ともかく二つ必要な場
合はあるわけで，これは無限小数の和は，無限小数としては必ずしも定まらないことを意味します．

†3 演算を定義するときには，どちらかの表示（例えば有限小数の方）に固定するという方法もあって，
そうするとこの問題は回避できます．文献 [1] は，本質的にそういう方針で演算を議論しています．
しかし，何となく逃げている感じがするので，0. 99 · · ·+ 0. 99 · · · も定義することにします．



の二通りで，これらは全ての n ∈ Nに対して

|a←n
1 − a←n

2 | ≤ 10−n (2)

を満たします．さて，無限小数 b1 と k ∈ Nに対して，Nk ∈ Nを十分大きくとれ
ば，全ての n ≥ Nk に対して，a←n

1 + b←n
1 と二つの無限小数 cまたは dの小数第

k 位までは一致するようにできます．この cと dは実数としては一致するので，

(i) c = dであり，cの小数点以下には 00でも 99でもない並びが無限回現れる．
(ii) c ̸= dであり，ある l ∈ Zに対して

c = [c]. c(1)c(2) · · · c(l)99 · · · ,
d = [c]. c(1)c(2) · · · (c(l) + 1)00 · · · .

のいずれかが成り立ちます†4．
まず (i)の場合，c(m−1)c(m) ̸∈ {00, 99}となる m ∈ Nを小さい方から順に並べ
たものを (mj)j∈N として，n ≥ Nmj とすると，a←n

1 + b←n と cは小数第mj 位ま
で一致するので，

[c]. c(1)c(2) · · · c(mj−2)01 ≤ a←n
1 + b←n

1 ≤ [c]. c(1)c(2) · · · c(mj−2)99

となっています．さらに n ≥ mj + 1とすると，a1 を a2 に取り替えても，(2)に
より |a←n

1 − a←n
2 | < 10−mj−1 なので，

(a←n
2 + b←n

1 )←mj−2 = c←mj−2

が成り立ちます．これは，全ての n ≥ max{Nmj ,mj + 1}に対して，a←n
2 + b←n

1

と cはの小数第mj − 2位まで一致することを意味しており，(mj)j∈N は j を大き
くすればいくらでも大きくなるので，無限小数 a2 と b1 の和として定まる実数が，
cが表す実数であることが示されました．
次に (ii)の場合，k ≥ lとして，n ≥ Nk ならば，a←n

1 + b←n
1 は cまたは dと小

数第 k 位まで一致するので，

[c]. c(1)c(2) · · · c(l)99 · · ·9 ≤ a←n
1 + b←n

1 ≤ [c]. c(1)c(2) · · · (c(l) + 1)00 · · · 01

小数第 k 位

†4 冒頭に注意したように，一つ目の表示で整数部分のある桁からずっと 9が続く可能性もあり，そのと
きは整数部分は [c]− 1 に変更が必要です．しかし，以下の議論を見れば影響がないことはわかると
思います．



となります．さらに，n ≥ k + 1とすると，a1 を a2 に取り替えても，(2)により
|a←n

1 − a←n
2 | < 10k+1 なので，

[c]. c(1)c(2) · · · c(l)99 · · · 98 ≤ a←n
2 + b←n

1 ≤ [c]. c(1)c(2) · · · (c(l) + 1)00 · · · 02

小数第 k 位

が成り立ち，a←n
2 + b←n は cまたは dと小数第 k − 1位まで一致することがわか

ります．従ってこの場合も，無限小数 a2 と b1 の和として定まる実数が，cが表す
実数であることが示されました．

この命題により，実数の和はその無限小数表示を使って定義でき，表示の仕方が
複数あるときは，どちらを使っても同じ結果になることがわかりました（加法の定
義）．また，無限小数 0. 00 · · · は実数 0の唯一の表示なので，0が実数の加法の単
位元であることもわかりました（加法の単位元の存在）．
和の定義から，以下の性質はすぐにわかります．

系 2. 以下が成り立つ：

(i) 実数 aに対して，a+ (−a) = 0．（加法の逆元の存在）
(ii) 実数 a, bに対して，a+ b = b+ a．（加法の交換法則）

証明. (i)については，a←n + (−a)←n = 0であることから，この Cauchy列が定
める実数も 0です．(ii)については，有限小数に対する交換法則を既知としたこと
から，(a←n + b←n)n∈N = (b←n + a←n)n∈N なので，これらの Cauhcy列が定める
実数も同じです．

系 2 (i)から −aが aの加法に関する逆元であることはわかりますが，他に逆元
がないかは，別に確かめる必要があります．

命題 3. 実数 a, bが a+ b = 0または b+ a = 0を満たすならば，a = −bである．
（加法の逆元の一意性）

証明. a+ b = 0と b+ a = 0のどちらの場合でも，どんな大きな k ∈ Nに対して
も，N ∈ Nを十分大きくとれば，全ての n ≥ N に対して

(a←n + b←n)←k = 0



が成り立ちます（b + a = 0のときは，有限小数の加法に関する交換法則を使いま
した）．このとき −10−k < a←n + b←n < 10−k なので，n > kとすると，aと bの
小数第 k 位までは

(i) 符号が逆で，各桁の数字は全て一致する，
(ii) ある j < k に対して，

a←k = [a]. a(1)a(2) · · · (a(j) + 1)00 · · · ,

b←k = −[a]. a(1)a(2) · · · a(j)99 · · · ,

(iii) ある j < k に対して

a←k = [a]. a(1)a(2) · · · a(j)99 · · · ,

b←k = −[a]. a(1)a(2) · · · (a(j) + 1)00 · · · ,

のいずれかの組み合わせしかありません†5．これがどんな大きな k に対しても成り
立つとすると，「全ての k で (i)が成り立つ」か「ある k までは (i)が成り立ち，そ
こから先では (ii)が成り立つ」か「ある k までは (i)が成り立ち，そこから先では
(iii)が成り立つ」の三通りのいずれかになります．これらのどの場合でも a = −b

なので，主張が示されました．

この命題から，とくに次の性質がわかり，これが後の議論で役に立ちます．

系 4. 実数 a, bに対して，b− a = −(a− b)が成り立つ．とくに |a− b| = |b− a|
である．

証明. どんな大きな k ∈ N に対しても，n ≥ k ならば，有限小数の演算の性質を
使って

(a− b)←k + (b− a)←k = (a←n − b←n)←k + (b←n − a←n)←k

= (a←n − b←n)←k + (−(a←n − b←n))←k

= (a←n − b←n)←k + (−(a←n − b←n)←k)

= (a←n − b←n)←k − (a←n − b←n)←k

= 0

†5 冒頭に注意したように，9が続く表示では整数部分のある桁からずっと 9が続く可能性もあり，その
ときは整数部分は [a]− 1 に変更が必要です．しかし，以下の議論を見れば影響がないことはわかる
と思います．



がわかります．従って，実数の和の定義から (a − b) + (b − a) = 0 となるので，
b− aは a− bの加法に関する逆元です．すると命題 3から，b− a = −(a− b)で
あることが従います．

この系によって，実数列の収束の定義（本書の定義 2.2.2）を書くときに「|an−a| <
10−k」だけ書けば「|a−an| < 10−k」も保証されることになります．また，|an−a|
が an−aと a−an の非負の方であることもわかるので，|an−a| < 10−k とすると

an − a < 10−k かつ a− an < 10−k

となり，後者に負の符号をつけることで −10−k < an − a < 10−k が成り立つこと
がわかります†6．

実数列の収束の言い換え

前節で二つの実数の差が定義できたので，数列の収束の定義に意味がつくように
なりました．これは，以下のように無限小数の性質に言い換えることができます．

命題 5. 実数列 (an)n∈N が a ∈ Rに収束する必要十分条件は，どんな大きな k ∈ N
に対しても，N ∈ Nを十分大きくとれば，全ての n ≥ N に対して

an と aが小数第 k 位まで一致する (3)

ようにできることである．但し，aが 0でない有限小数の場合は二通りの無限小数
表現があり，n毎にそのどちらかに対して (3)が成り立つという意味とする．

証明. まず命題の条件が成り立つとすると，N ∈ N を十分大きくとれば，全ての
n ≥ N に対して an と aが小数第 k+1位まで一致するようにできます．このとき
(1)を思い出すと，全てのm > k + 1に対して

|a←m
n − a←m| = |(a←k+1

n + ak+2←m
n )− (a←k+1 + ak+2←m)|

≤ |ak+2←m
n |+ |ak+2←m|

≤ 2 · 10−k−1

†6 ここで，両辺に −1を掛けると不等号の向きが反転するという，まだ証明していない積の性質を使っ
ているように見えるかも知れませんが，そうではありません．負の符号 − をつけると順序が反転す
ることは，無限小数に基づく定義を使って簡単に確かめられます．



が成り立つので，|a←m
n − a←m|は小数第 k位までは 0です．実数の差の定義から，

mを十分大きくとれば an − aと a←m
n − a←m は小数第 k位まで一致するようにで

きるので，|an − a|も小数第 k 位までは 0であり，従って |an − a| < 10−k です．
これで，数列 (an)n∈N が a ∈ Rに収束することの定義が確かめられました．
逆に，(an)n∈N が a ∈ R に収束するとして，命題の条件が成り立つことを確か
めましょう．数列の収束の定義から，どんな大きな l ∈ N に対しても，N1,l ∈ N
を十分大きくとれば，全ての n ≥ Nl に対して |an − a| < 10−l−1 とできるので，
an − aは小数第 l + 1位までは 0です．さらに無限小数の差の定義から，Ml ∈ N
を十分大きくとれば，全てのm ≥ Ml に対して，a←m

n − a←m と an − aは小数第
l + 1位まで一致するようにできるので，n ≥ Nl, m ≥ Ml に対して

|a←m
n − a←m| < 10−l−1

が成り立ちます．従って，必要なら m を大きく取り直して m ≥ l + 2 とするこ
とで，

|a←l+1
n − a←l+1| = |(a←m

n − al+2←m
n )− (a←m − al+2←m)|

≤ |a←m
n − a←m|+ |al+2←m

n |+ |al+2←m|

≤ 3 · 10−l−1
(4)

とできます．これを用いて，命題の条件が成り立つことを確かめます．
まず a = 0のときは，n ≥ Nl ならば，上で示した (4)から，a←l+1

n の小数第 l

位までは 0であることがわかるので，命題の条件が示されました．
次に aが有限小数ではない場合を考えましょう．このとき，どんな大きな kに対
しても，ある l ≥ k + 2が存在して，aの小数第 l − 1位と第 l位について，

1 ≤ a(l) ≤ 8, a(l−1)a(l) = 90, a(l−1)a(l) = 09

のいずれかが成り立ちます．このどの場合にも，n ≥ Nl ならば，上で示した (4)

から，a←l+1
n と a←l+1 は小数第 l− 2位まで一致することがわかるので，とくに小

数第 k 位までも一致します．これで命題の条件が示されました．
最後に aが 0でない有限小数の場合を考えましょう．このとき，ある j ∈ Nに
対して，

a = [a]. a(1)a(2) · · · a(j)99 · · ·
= [a]. a(1)a(2) · · · (a(j) + 1)00 · · ·



となっています†7．このとき l ≥ j とすると，全ての n ≥ Nl に対して，上で示し
た (4)から，a > 0のときは

[a]. a(1)a(2) · · · a(j)99 · · · 96 ≤ a←l+1
n ≤ [a]. a(1)a(2) · · · (a(j) + 1)00 · · · 03,

小数第 l + 1位

また a < 0ならば（[a]は aより大きい最小の整数だったことを思い出して），
[a]. a(1)a(2) · · · (a(j) + 1)00 · · · 03 ≤ a←l+1

n ≤ [a]. a(1)a(2) · · · a(j)99 · · · 96,

小数第 l + 1位

となるので，いずれにしても an は aの二つの表現のどちらかと小数第 l 位までは
一致しています．これで命題の条件が示されました．

この命題は本書の 13 ページに書いた実数同士が近いことの感覚的な説明と，
数列の収束の関係を明確にしたものです．例えばこれによって，数列が二つの異
なる実数に収束することはないことがわかります．また，本書の定理 2.4.1 や定
理 2.6.2 の証明において「aNk

と a∞ が小数第 k ± 1 位まで一致する」ことから，
limn→∞ an = a∞ を導いた議論も正当化されます．とくに，前節で定義した a←n

や和についても，以下の自然な結果が成り立ちます．

系 6. 実数 aに対して，a = limn→∞ a←n．

系 7. 実数 a, bに対して，a+ b = limn→∞(a←n + b←n)．

数列の極限と順序の関係も，この後で使うので示しておきましょう．

系 8. 実数列 (an)n∈N と (bn)n∈N がどちらも収束し，全ての n ∈ Nで an ≤ bn を
満たすならば，limn→∞ an ≤ limn→∞ bn．

証明. 命題 5から，どんな大きな k ∈ Nに対しても，n ∈ Nを十分大きくとれば，
an と a = limn→∞ an，bn と b = limn→∞ bn は，どちらも小数第 k 位までは一致
します．仮定から an ≤ bn なので，

a←k = a←k
n ≤ b←k

n = b←k

†7 冒頭に注意したように，一つ目の表示で整数部分のある桁からずっと 9が続く可能性もあり，そのと
きは整数部分は [a]− 1 に変更が必要です．しかし，以下の議論を見れば影響がないことはわかると
思います．



となり，これが全ての k ∈ Nに対して成り立つことは，本書の定義での a ≤ bを意
味します．

注意. 本書ではこの「極限が順序を保存する」という性質を述べず，証明もしませ
んでした．従って，極限に関する議論をするときは，この性質を使わないようにし
たつもりでした．しかし，広義積分の章の例 8.3.4と例 8.3.5でうっかり使ってし
まったことに，後になって気づきました．ここに懺悔します．

加法の性質

加法が定義できて，有限小数近似の極限であるという自然な性質も示せたので，
それを使って加法の性質を証明していきます．

系 9. 実数 a, b, c, dに対して，a ≤ bかつ c ≤ dならば，a+ c ≤ b+ dが成り立つ．
（加法と順序の関係）

証明. この性質が有限小数に対して成り立つことは既知としました．そのことと，
系 7，系 8を用いれば，

a+ c = lim
n→∞

(a←n + c←n)

≤ lim
n→∞

(b←n + d←n)

= b+ d

となって，これが示すべきことでした．

この系 9 と系 4 により，例えば実数列の収束に現れる条件 |an − a| < 10−k か
ら，−10−k < an − a < 10−k を経由して，

a− 10−k < an < a+ 10−k

を導くことができるようになります．

命題 10. 実数 a, b, cに対して，(a+ b) + c = a+ (b+ c)が成り立つ．（加法の結
合法則）

証明. 系 6と系 7，及びこの命題の直前に示したことを使うと，どんな大きな k ∈ N



に対しても，N1 ∈ Nを十分大きくとれば，全ての n ≥ N1 に対して

a←n + b←n − 10−k < a+ b < a←n + b←n + 10−k

c←n − 10−k < c < c←n + 10−k

が成り立ちます．和をとって，左辺と右辺では有限小数に対する結合法則を使い，
系 9も使うと

(a←n + b←n) + c←n − 2 · 10−k

< (a+ b) + c

< (a←n + b←n) + c←n + 2 · 10−k

となります．同様の議論で，どんな大きな k ∈ Nに対しても，N2 ∈ Nを十分大き
くとれば，全ての n ≥ N2 に対して

a←n + (b←n + c←n)− 2 · 10−k

< a+ (b+ c)

< a←n + (b←n + c←n) + 2 · 10−k

が得られます．ここまでに示したことから，

(a+ b) + c = lim
n→∞

((a←n + b←n) + c←n),

a+ (b+ c) = lim
n→∞

(a←n + (b←n + c←n))

となりますが，有限小数に対する結合法則から，この二つの式の右辺は同じもので
す．従って，左辺も等しいことが示されました．

さて，ここまでで加法の性質のほとんどが証明できました．実数 a, bの差は，加
法に関する逆元との和として a + (−b) と定義しました．これが加法の逆演算に
なっていることも確かめておきましょう†8．例えば右からの和を考えると，加法の
結合法則を使って，

(a− b) + b = a+ ((−b) + b) = a+ 0 = a,

(a+ b)− b = a+ (b+ (−b)) = a+ 0 = a

†8 加法の諸性質を示したところまでで実数が加法について群になることがわかっているので，代数学に
少しでも馴染みがあれば，既に知っていることでしょう．しかし，微積分を学んでいる時点で，学習
者が代数学に馴染みがあるとは限らないと思うので，小学校で学んだ性質の確認ということで，示し
ておきます．



となるので，確かに逆演算になっています．これ以外の順序で和をとる場合も，交
換法則と結合法則を使えば同様に確かめられます．
最後に，加法と絶対値の関係として，三角不等式を示しておきます．加法の性質
の証明でも，何度か極限の概念を活用しましたが，三角不等式が示せると，さらに
自由に極限の性質を使えるようになります．

命題 11. 実数 a, bに対して，|a+ b| ≤ |a|+ |b|が成り立つ．（三角不等式）

証明. 和を定義した過程で，どんな大きな k ∈ Nに対しても，N ∈ Nを十分大き
くとれば，全ての n ≥ N に対して a←n + b←n と a+ bは小数第 k位までは一致す
るようにできたことを思い出しましょう．このとき，|a←n + b←n|と |a + b|も小
数第 k 位まで一致し，命題 5により，これは limn→∞ |a←n + b←n| = |a+ b|を意
味します．同様に系 6から limn→∞ |a←n| = |a|と limn→∞ |b←n| = |b|もわかり，
有限小数に対しては三角不等式を既知としていたので，系 8を用いて

|a+ b| = lim
n→∞

|a←n + b←n|

≤ lim
n→∞

(|a←n|+ |b←n|)

≤ |a|+ |b|

となります．

ここまでで，本書の定理 2.3.1 (1)の主張に意味をつけ，証明をするための道具
は全て揃ったので†9，以下では収束する実数列 (an)n∈N と (bn)n∈N に対して，

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn (5)

が成り立つことも使えます．

乗法の定義と性質

次に二つの実数の積を定義しましょう．和と同様に，まずは無限小数 a, b に
対して (a←nb←n)n∈N を考えて，これが Cauchy 列になることを示します．a と
b の数表示は，左に無限に続くことはないので，max{|a|, |b|} ≤ 10M となる
M ∈ N が存在します．このとき，絶対値の定義から，全ての n ∈ N に対して，

†9 証明の中で使っているのは，加法の結合法則と交換法則，三角不等式だけです．



max{|a←n|, |b←n|} ≤ 10M となります．これと，有限小数に対しては既知とした
積の性質を用いると，すべてのm,n ∈ Nでm < nを満たすものに対して

|a←mb←m − a←nb←n| ≤ |a←m(b←m − b←n) + (a←m − a←n)b←n|
≤ |a←m||b←m − b←n|+ |b←n||a←m − a←n|

≤ 10M |b←m − b←n|+ 10M |a←m − a←n|

が成り立ちます．ここで (1)を思い出すと，

|a←mb←m − a←nb←n| ≤ 2 · 10M−m

となるので，(a←nb←n)n∈N は Cauchy列です．従って和のときと同様に，ある無
限小数 c, dが存在して，どんな大きな k ∈ Nに対しても，N ∈ Nを十分大きくと
れば，全ての n ≥ N に対して a←nb←n と cまたは dの小数第 k 位までは一致す
ることがわかります（c = dの場合もあります）．さらにこの cと dは，実数とし
ては一致することもわかるので，対応する実数を abと定義することにします．こ
の定義と有限小数の演算の性質から，

• 無限小数 1.00 · · · が乗法の単位元であること,

• 無限小数 0.00 · · · が乗法の零元であること，
• 無限小数 a, bに対して，|ab| = |a||b|であること

の三つの性質は，直ちにわかります．
和を定義したときと同様に，これは無限小数の積を定義したわけで，実数が二通
りの無限小数表示を持つときには，どちらを使っても結果が同じかどうかが気にな
ります．

命題 12. 無限小数 a1, a2, b1, b2 について，a1 と a2 は実数として等しく，b1 と b2

は実数として等しいとする．このとき，{aibj}2i,j=1 は全て同じ実数である．

証明. a1b1 と a2b1 が同じ実数であることを示します．b1 を b2 に変える場合も，
議論は同じです．積を定義したときと同様に，max{|a1|, |a2|, |b1|} ≤ 10M となる
M ∈ Nをとっておきます．すると，有限小数に対する演算の性質を使って，

a←n
2 b←n

1

{
≥ (a←n

1 − 10−n)b←n
1 = a←n

1 b←n
1 − 10M−n,

≤ (a←n
1 + 10−n)b←n

1 = a←n
1 b←n

1 + 10M−n



がわかります．ここで命題 5により，limn→∞ a←n
1 b←n

1 = a1b1 なので，どんな大
きな k ∈ Nに対しても，N ∈ Nを十分大きくとれば，結合法則の証明と同じ議論
を経由して，

a1b1 − 10−k < a←n
1 b←n

1 < a1b1 + 10−k

がわかります．すると，上の a←n
2 b←n

1 の評価と組み合わせて系 9 を使うことで，
全ての n ≥ max{N1, N2}に対して

a1b1 − 10−k − 10M−n < a←n
2 b←n

1 < a1b1 + 10−k + 10M−n

が成り立ちます．このことから，limn→∞(a←n
2 b←n

1 ) = a1b1 がわかるので，命題 5

によって，Cauchy列 (a←n
2 b←n

1 )n∈N が定める実数は a1b1 です．

これで，実数 a, bに対して，その表示の仕方に依らずに積 abが定まることが示
せました（乗法の定義）．とくに，実数 1が乗法の実数の乗法の単位元であること
（乗法の単位元の存在）や，0が乗法の零元であること（乗法の零元の存在），およ
び実数 a, bに対して |ab| = |a||b|であること（乗法と絶対値の関係）もわかりまし
た．さらに命題 5から，次のことも言えます．

系 13. 実数 a, bに対して，ab = limn→∞(a←nb←n)である．

これと有限小数の演算の性質や，系 8を用いると，以下のような性質が直ちに導
かれます．

系 14. 実数 a, bに対して，ab = baが成り立つ．（乗法の交換法則）

系 15. 実数 a, b, cに対して，a ≤ bとすると，以下が成り立つ：{
ac ≤ bc, c ≥ 0,

ac ≥ bc, c < 0.

（乗法と順序の関係）

系 16. 実数 a, bが ab = 0を満たすならば，a = 0または b = 0である．（乗法の
零元の一意性）

証明. 対偶を示すため，aと bがともに 0でないとします．このとき n ∈ Nを十分
大きくとれば，a←n と b←n がともに 0でないようにできます．ここで，

|a←n| ≤ |a|, |b←n| ≤ |b|



であることと，系 15，及び有限小数の演算の性質を使うと，

|ab| ≥ |a←n||b←n| = |a←nb←n| > 0

がわかります．絶対値が 0でない数は 0ではないので，これで abが 0でないこと
が示せました．

次に分配法則を証明します．これは，無限小数で実数を定義したときに，一番面
倒になるところで，この証明に向けていろいろ準備をしてきました．

系 17. 実数 a, b, cに対して，a(b+ c) = ab+ acが成り立つ．（分配法則）

証明. まず，有限小数に対する分配法則

a←n(b←n + c←n) = a←nb←n + a←nc←n (6)

において n → ∞の極限をとると，系 13と (5)により右辺は ab + acに収束しま
す．従って，どんな大きな k ∈ Nに対しても，N1 ∈ Nを十分大きくとれば，全て
の n ≥ N1 に対して，

|a←n(b←n + c←n)− (ab+ ac)| < 10−k (7)

とできます．次に，(6)の左辺と a(b+ c)の定義に使う数列の差の絶対値を考える
と，有限小数に対しては分配法則を既知としたので，

|a←n(b←n + c←n)− a←n(b+ c)←n|
= |a←n||b←n + c←n − (b+ c)←n|

(8)

となります．積の定義における議論と同様に，M ∈ Nを十分大きくとって，全て
の n ∈ N に対して |a←n| ≤ 10M としておきましょう．ここで系 6 により，b←n,

c←n, (b+ c)←n は，n → ∞においてそれぞれ b, c, b+ cに収束するので，どんな
大きな k ∈ Nに対しても，N ∈ Nを十分大きくとれば，全ての n ≥ N に対して

|b←n − b| < 10−M−k,

|c←n − c| < 10−M−k,

|(b+ c)←n − (b+ c)| < 10−M−k



が成り立つようにできます．これと，加法の結合法則や交換法則と，三角不等式と
系 4を使えば，全ての n ≥ N に対して

|b←n + c←n − (b+ c)←n|
= |b←n − b+ c←n − c+ (b+ c)− (b+ c)←n|
≤ |b←n − b|+ |c←n − c|+ |(b+ c)←n − (b+ c)|

< 3 · 10−M−k

となります．これを (8) に代入して，|a←n| ≤ 10M と有限小数に対する乗法と順
序の関係を使えば，全ての n ≥ N に対して

|a←n(b←n + c←n)− a←n(b+ c)←n| < 3 · 10−k

が得られます．これと (7)を合わせて，三角不等式を使えば，

|ab+ ac− a←n(b+ c)←n| < 4 · 10−k

となって，これから ab+ ac = limn→∞ a←n(b+ c)←n = a(b+ c)が従います．

ここまでで，本書の定理 2.3.1 (2)の主張に意味をつけ，証明するための道具は
全て揃ったので†10，以下では収束する実数列 (an)n∈N と (bn)n∈N に対して，

lim
n→∞

(anbn) =
(
lim
n→∞

an

)(
lim
n→∞

bn

)
(9)

が成り立つことも使えます．これを使って，乗法の最後の性質を示します．

系 18. 実数 a, b, cに対して，(ab)c = a(bc)が成り立つ．（乗法の結合法則）

証明. 系 6により，
a = lim

n→∞
a←n, b = lim

n→∞
b←n, c = lim

n→∞
c←n

なので，系 13と (9)，及び有限小数の乗法に関する結合法則を使えば，

(ab)c =
(
lim
n→∞

(a←nb←n)
)

lim
n→∞

c←n

=
(
lim
n→∞

(a←nb←nc←n)
)

= lim
n→∞

a←n
(
lim

n→∞
(b←nc←n)

)
= a(bc)

†10 証明の中で使っているのは，加法の諸性質，乗法の交換法則，乗法と絶対値の関係，分配法則と三角
不等式だけです．



となって，求める等式が得られます．

最後に残った商の定義をします．一般の 0でない実数の逆数が定義できれば，商
は逆数との積として定義できそうなので，まずは逆数の存在を示します．正の実数
の無限小数表示 a = [a]. a(1)a(2) · · · に対して，小数第 n + 1位以降が全て 0であ
る有限小数 bn であって，0 ≤ abn < 1を満たすものを考えます．aの小数第m位
が 0でないとすると，a · 10m ≥ 1なので，bn < 10m が必要です．また系 15から
bn ≥ 0である必要もあるので，0 ≤ abn < 1を満たすような小数第 n + 1位以降
が全て 0である有限小数 bn は有限個しかないことがわかります．その中で最大の
ものを b∗n とします．この b∗n が n → ∞で収束することと，ab∗n の無限小数表示が
0. 99 · · · に揃っていくことを証明しましょう．
まず，0 ≤ ab∗n < 1であることから，ab∗n の整数部分は 0であることがわかりま
す．次に，b∗n+1 を決めるときには，小数第 n+ 1位が 0もあり得るので，b∗n も候
補に入っていることに注意すると，b∗n は単調増加列です．これと b∗n < 10m だっ
たことを合わせると，本書の定理 2.4.1 により limn→∞ b∗n が存在することがわか
るので，これを a−1 と書くことにします．また，系 15から，ab∗n も単調増加列に
なります．従って，

ab∗n = 0. 99 · · ·9(ab∗n)(k)(ab∗n)(k+1) · · ·

となったとき，m > nに対して ab∗m の小数第 k 位より上の位が 9以外の数になる
ことはありません．すると，ab∗n の無限小数表示が 0. 99 · · · に揃っていかないとす
ると，ある k ∈ Nと N ∈ Nが存在して，(ab∗n)n≥N の小数第 k 位は常に 8以下で
あることになり，これは全ての n ≥ N に対して ab∗n ≤ 1− 2 · 10−k を意味します．
ここで，a < 10M となるM ∈ Nをとって，n > k+M とすると，分配法則と系 9

から

a(b∗n + 10−n) ≤ ab∗n + 10M−n

≤ ab∗n + 10−k

≤ 1− 2 · 10−k + 10−k

= 1− 10−k

となりますが，これは「小数第 n + 1位以降が全て 0である有限小数 b∗n + 10−n」
と aの積が 1より小さいことを意味し，b∗n がそのような数の中で最大のものだっ
たことに反します．従って，このようなことは起こり得ず，ab∗n の小数点以下は全



て 9に揃っていくことが示されました．すると，命題 5により limn→∞ ab∗n = 1で
あり，(9)により

aa−1 = a lim
n→∞

b∗n = lim
n→∞

ab∗n = 1

となって，a−1 が乗法の右逆元であることが示されました．この議論は a の無
限小数表示を固定して始めましたが，実数の積はその無限小数表示に依らない
ことは示してあるので，実数 a が異なる無限小数表示 a1 と a2 を持つ場合でも，
a2a
−1
1 = a1a

−1
1 = 1が成り立ち，どちらを使っても a−11 が乗法の右逆元という性

質は変わりません．また，乗法の交換法則も示してあるので，a−1a = 1も直ちに
わかり，a−1 は aの乗法の左逆元でもあります．最後に aが負の場合も，上の手続
きの b∗n に負の符号が付くだけで，それから定まる実数が乗法の両側逆元になるこ
とは同じ議論でわかるので，0でない実数に対する（乗法に関する逆元の存在）が
確かめられました．乗法に関する逆元が他にないことは，簡単にわかります．

命題 19. 実数 a, bに対して，ab = 1または ba = 1ならば，b = a−1 である．（乗
法の逆元の一意性）

証明. 乗法の交換法則を示してあるので，ab = 1の場合だけ考えれば十分です．も
し aまたは bが 0なら，0が乗法の零元であることから ab = 0なので，aも bも 0

ではありません．そこで分配法則と乗法の逆元の定義を使うと，

a(b− a−1) = ab− aa−1 = 1− 1 = 0

となりますが，aが 0でないことと，乗法の零元の一意性から b− a−1 = 0となっ
て，加法の逆元の一意性から b = a−1 が従います．

こうして定めた乗法の逆元との積を，商と呼びます．これが乗法の逆演算になっ
ていることも確かめておきましょう†11．例えば全て右から掛ける場合，乗法の結
合法則を使って，

(ab−1)b = a(b−1b) = a · 1 = a, (ab)b−1 = a(bb−1) = a · 1 = a

となるので，確かに逆演算になっています．これ以外の順序で掛ける場合も，交換
法則と結合法則を使えば同様に確かめられます．

†11 乗法の諸性質と逆元の存在を示したところまでで実数が体になることがわかっているので，代数学に
少しでも馴染みがあれば，既に知っていることでしょう．しかし，微積分を学んでいる時点で，学習
者が代数学に馴染みがあるとは限らないと思うので，小学校で学んだ性質の確認ということで，示し
ておきます．
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