微分トポロジー **'22: Note 2** 2022.3.20, 11:20-12:20

市原 一裕 双曲デーン手術定理とその精密化(サーベイ)

Thurston の双曲デーン手術定理、および、その精密化や亜種について、それらの関係や流れ、応用についての概要を説明する。

§ 2. Refinements & descendants

Hyperbolic Dehn surgery them.

M: complete hyp. 3-mfd. of finite vol. (cusps)

(=: Moo, oo, -- oo)

Mdi,..,dn: the n-mfd. Obtained by
generalized Dehn surgery.

(metric complition)

(di,..,dn) & S2 x ... x S2 (S2=R201003)

 $\exists U : \text{nhd. of } (\infty, \cdot \cdot, \infty) \text{ sit.}$ $Md_{1,\cdot\cdot\cdot}, d_{n} \text{ admits a hyp. str.}$ $\text{for } (d_{1,\cdot\cdot\cdot}, d_{n}) \in U$

Furthermore:

O di= (Pi, Fi), coprime, → "usual" Dehn surgery & hyp. str. is genuine.

0 di = r(pi, gi), (Pi, gi): coprime

-> Md.,.., dn = 3-mfd. obtained by
topogically "usual" Dehn surgery
along (Pi, &i)'s.

I cone hyp. str. on Ma..., dn w/ axis of cone sing, is the coves of attached solid tori.

- ② For (P_1, P_2) as above, $|P_1| + |P_2| \rightarrow \infty$, then
 - · the lon (the core geod.) o
 - · Vol (Md,,,dn) < Vol M ((d,,,dn) + (∞,,,∞)) & Vol (Md,,,dn) → Vol M

C. D. Hodgson\ and\ S. P. Kerckhoff, Universal bounds for hyperbolic Dehn surgery, Ann. of Math. (2) {\bf 162} (2005), no.~1, 367--421. MR2178964 arXiv:math/0204345

Theorem 1.3. Let X be a complete, finite volume, orientable, hyperbolic 3-manifold with one cusp, and let T be a horospherical torus which is embedded as a cross-section to the cusp of X. Let γ be a simple closed curve on T whose Euclidean geodesic length on T is denoted by L. If the normalized length of γ , $\hat{L} = \frac{L}{\sqrt{\operatorname{area}(T)}}$, is at least 7.515, then the closed manifold $X(\gamma)$ obtained by Dehn filling along γ is hyperbolic.

COROLLARY 1.4. Let X be a complete, orientable, hyperbolic 3-manifold with one cusp. Then at most 60 Dehn fillings on X yield manifolds which admit no complete hyperbolic metric.

C. D. Hodgson\ and\ S. P. Kerckhoff, The shape of hyperbolic Dehn surgery space, Geom. Topol. {\bf 12} (2008), no.~2, 1033--1090. MR2403805 arXiv:0709.3566

Theorem 1.1 Consider a complete, finite volume hyperbolic structure on the interior of a compact, orientable 3-manifold X with one torus boundary component. Let T be a horospherical torus which is embedded as a cross-section to the cusp of the complete structure. Consider $\mathcal{HDS}(X)$ as a subset of $H_1(T;\mathbb{R}) \cong \mathbb{R}^2$ where the latter is endowed with the Euclidean metric induced from the universal cover of T with its flat metric scaled to have unit area. Then $\mathcal{HDS}(X)$ contains the complement of a disk of radius 7.5832, centered at the origin. Equivalently, any $c \in H_1(T;\mathbb{R})$ whose normalized length $\hat{L}(c)$ is bigger than 7.5832 is in $\mathcal{HDS}(X)$.

J. F. Brock\ and\ K. W. Bromberg, On the density of geometrically finite Kleinian groups, Acta Math. {\bf 192} (2004), no.~1, 33--93. MR2079598

THEOREM 1.3. (The drilling theorem) Let M be a geometrically finite hyperbolic 3-manifold. For each L>1, there is an l>0 so that if c is a geodesic in M with length $l_M(c)< l$, there is an L-bi-Lipschitz diffeomorphism of pairs

$$h: (M \setminus \mathbf{T}(c), \partial \mathbf{T}(c)) \longrightarrow (M_0 \setminus \mathbf{P}(c), \partial \mathbf{P}(c)),$$

where $M\backslash \mathbf{T}(c)$ denotes the complement of a standard tubular neighborhood of c in M, M_0 denotes the complete hyperbolic structure on $M\backslash c$, and $\mathbf{P}(c)$ denotes a standard rank-2 cusp corresponding to c.

D.Futer, J.S. Purcell, S.Schleimer, Effective bilipschitz bounds on drilling and filling, preprint arXiv:1907.13502, To appear in Geometry & Topology

Theorem 1.2. Fix $0 < \epsilon \le \log 3$ and J > 1. Let M be a finite-volume hyperbolic 3-manifold and Σ a geodesic link in M whose total length ℓ satisfies

$$\ell \leq \min \left\{ \frac{\epsilon^5}{6771 \cosh^5(0.6\epsilon + 0.1475)}, \, \frac{\epsilon^{5/2} \log(J)}{11.35} \right\}.$$

Then, setting $N=M-\Sigma$, and equipping it with its complete hyperbolic metric, there are natural J-bilipschitz inclusions

$$\varphi \colon M^{\geq \epsilon} \hookrightarrow N^{\geq \epsilon/1.2}, \qquad \psi \colon N^{\geq \epsilon} \hookrightarrow M^{\geq \epsilon/1.2}.$$

Here $M^{\geq \epsilon}$ and $N^{\geq \epsilon}$ are the ϵ -thick parts of M and N, respectively. The compositions $\varphi \circ \psi$ and $\psi \circ \varphi$ are the identity wherever both maps are defined. Furthermore, φ and ψ are equivariant with respect to the symmetry group of the pair (M, Σ) .

Corollary 7.20. Let M be a complete, finite volume hyperbolic 3-manifold. Let $\Sigma \cup \gamma$ be a geodesic link in M, where γ is connected. Let $\mathcal{L}_M(\gamma) = \operatorname{len}_M(\gamma) + i\tau_M(\gamma)$ be the complex length of γ in the complete metric on M, and suppose that $\max(\operatorname{len}_M(\Sigma), \operatorname{len}_M(\gamma)) \leq 0.0735$. Then γ is also a geodesic in the complete metric on $N = M - \Sigma$, of complex length $\mathcal{L}_N(\gamma)$. Furthermore,

$$1.9793^{-1} \le \frac{\text{len}_N(\gamma)}{\text{len}_M(\gamma)} \le 1.9793$$
 and $|\tau_N(\gamma) - \tau_M(\gamma)| \le 0.05417$.

[Volume change]

W. D. Neumann\ and\ D. Zagier, Volumes of hyperbolic three-manifolds, Topology {\bf 24} (1985), no.~3, 307--332. MR0815482

$$Q_i(p, q) = (\text{length of } p m_i + q \ell_i)^2 / (\text{volume of } T_i).$$

THEOREM 1A. With the above notations,

$$Vol(M_{\kappa}) = Vol M - \pi^{2} \sum_{i=1}^{h} \frac{1}{Q_{i}(p_{i}, q_{i})} + 0 \left(\sum \frac{1}{p_{i}^{4} + q_{i}^{4}} \right).$$

C. D. Hodgson\ and\ S. P. Kerckhoff, The shape of hyperbolic Dehn surgery space, Geom. Topol. {\bf 12} (2008), no.~2, 1033--1090. MR2403805 arXiv:0709.3566

Theorem 1.3 Let X be a compact, orientable 3-manifold as in Theorem 1.2, and let V_{∞} denote the volume of the complete hyperbolic structure on the interior of X. Let $c = (c_1, \ldots, c_k) \in H_1(\partial X; \mathbb{R})$ be a surgery coefficient with normalized lengths $\widehat{L}_i = \widehat{L}(c_i)$ satisfying

$$\sum_{i} \frac{1}{\hat{L}_{i}^{2}} < \frac{1}{C^{2}} \text{ where } C = 7.5832,$$

and let M(c) be the filled hyperbolic manifold with Dehn surgery coefficient c. Then the decrease in volume $\Delta V = V_{\infty} - \text{vol}(M(c))$ during hyperbolic Dehn filling is at most 0.198.

I. Agol, Volume change under drilling, Geom. Topol. {\bf 6} (2002), 905--916. MR1943385

D. Futer, E. Kalfagianni\ and\ J. S. Purcell, Dehn filling, volume, and the Jones polynomial, J. Differential Geom. {\bf 78} (2008), no.~3, 429--464. MR2396249

Theorem 1.1. Let M be a complete, finite-volume hyperbolic manifold with cusps. Suppose C_1, \ldots, C_k are disjoint horoball neighborhoods of some subset of the cusps. Let s_1, \ldots, s_k be slopes on $\partial C_1, \ldots, \partial C_k$, each with length greater than 2π . Denote the minimal slope length by ℓ_{\min} . If $M(s_1, \ldots, s_k)$ satisfies the geometrization conjecture, then it is a hyperbolic manifold, and

$$\operatorname{vol}(M(s_1,\ldots,s_k)) \ge \left(1 - \left(\frac{2\pi}{\ell_{\min}}\right)^2\right)^{3/2} \operatorname{vol}(M).$$

[Variations]

S. A. Bleiler\ and\ C. D. Hodgson, Spherical space forms and Dehn filling, Topology {\bf 35} (1996), no.~3, 809--833. MR1396779 Gromov-Thurston's 2 π -theorem

THEOREM 9 (The " 2π " Theorem). Let M be a complete hyperbolic 3-manifold of finite volume and P_1, \ldots, P_v disjoint horoball neighbourhoods of the cusps of M. Suppose r_i is a slope on ∂P_i represented by a geodesic α_i with length in the Euclidean metric satisfying length(α_i) > 2π , for each $i = 1, \ldots, v$. Then $M(r_1, \ldots, r_v)$ has a metric of negative curvature.

Theorem 4. If M is of type H, then there exist at most 24 finite fillings on M. Moreover, if r and s are slopes such that M(r) and M(s) have finite fundamental group then $\Delta(r,s) < 23$. The same results hold, more generally, replacing finite fillings by Dehn fillings which do not admit negatively curved metrics.

I. Agol, Bounds on exceptional Dehn filling, Geom. Topol. {\bf 4} (2000), 431--449. MR1799796 M. Lackenby, Word hyperbolic Dehn surgery, Invent. Math. {\bf 140} (2000), no.~2, 243--282. MR1756996

Theorem 3.1. Let M be a compact orientable 3-manifold with interior having a complete finite volume hyperbolic structure. Let s_1, \ldots, s_n be slopes on ∂M , with one s_i on each component of ∂M . Suppose that there is a horoball neighbourhood N of the cusps of $M - \partial M$ on which each s_i has length more than 6. Then, the manifold obtained by Dehn filling along s_1, \ldots, s_n is irreducible, atoroidal and not Seifert fibred, and has infinite, word hyperbolic fundamental group.

Theorem 8.1 Let N be a hyperbolic 3-manifold, and C a distinguished embedded torus cusp. The intersection number between exceptional boundary slopes on C is ≤ 10 , and there are at most 12 exceptional boundary slopes.

M. Lackenby\ and\ R. Meyerhoff, The maximal number of exceptional Dehn surgeries, Invent. Math. {\bf 191} (2013), no.~2, 341--382. MR3010379

Theorem 4.1 Let M be a compact orientable 3-manifold, with boundary a torus and with interior admitting a complete finite-volume hyperbolic structure. Let s be a slope on ∂M with length at least

$$\frac{\pi e_2}{\arcsin(e_2/2)}$$

if $e_2 \leq \sqrt{2}$, and length at least

$$\frac{2\pi e_2}{2\arcsin(\sqrt{1-e_2^{-2}})+e_2^2-2\sqrt{e_2^2-1}}$$

if $e_2 > \sqrt{2}$. Then, M(s) is hyperbolic.

Theorem 1.1 Let M be a compact orientable 3-manifold with boundary a torus, and with interior admitting a complete finite-volume hyperbolic structure. Then the number of exceptional slopes on ∂M is at most 10.

Theorem 1.2 Let M be a compact orientable 3-manifold with boundary a torus, and with interior admitting a complete finite-volume hyperbolic structure. If s_1 and s_2 are exceptional slopes on ∂M , then their intersection number $\Delta(s_1, s_2)$ is at most 8.