Homework

May 2024

1 Manifolds

Exercise 1.1 Construct an canonical isomorphism $H^2(X, \mathbb{Z}) = [X, K(\mathbb{Z}, 2)]$, where $K(\mathbb{Z}, 2)$ is the Eilenberg-MacLane space.

Here [X, Y] is the homotopy set of continuous maps $f: X \to Y$

Exercise 1.2 For a group G prove that any principal G-bundle $P \to X$ is isomorphic to the pull-back bundle $f^*\pi_G$ of π_G by $f: X \to BG$. Here $\pi_G: EG \to BG$ is the universal G-bundle.

Exercise 1.3 Prove $BU(1) = K(\mathbb{Z}, 2)$ and it is homotopy equivalent to infinite dimension complex projective space.

Exercise 1.4 Construct for any group G the classifying space BG and the universal principal G-bundle $\pi_G : EG \to BG$.

Exercise 1.5 Let X be a closed 4-manifold. Prove for $\alpha, \beta \in H_2(X, \mathbb{Z}), \alpha \in \beta = Q(PD(\alpha), PD(\beta)) = \int_X \eta_A \wedge \eta_B$. Here η_A and η_B are closed 2-forms corresponding to the integral classes for the natural isomorphism $H_2(X, \mathbb{R}) \cong H^2_{dR}(X, \mathbb{R})$

Exercise 1.6 For any element $\alpha \in H_2(X^4)$ is equivalent to the homology class of the zero set of a generic section $s: X \to \mathcal{L}$ of a line bundle \mathcal{L} .

2 Knot theory

Exercise 2.1 Prove any knot in S^3 has a Seifert surface. Use the Seifert Algorightm.

Exercise 2.2 Prove that Hopf link has a Seifert surface homeomorphic to annulus.