計算機数学I (2019) 第9回

照井章(筑波大学数理物質系数学域) Akira Terui (Institute of Mathematics, University of Tsukuba)

第8回のまとめ

- 拡張Euclid互除法の性質
- 拡張Euclid互除法の応用
 - 法逆元 (modular inverse) の計算

第9回の内容

- 拡張Euclid互除法の性質(つづき)
- ・ 拡張Euclid互除法の応用
 - 実数の連分数展開 (§ 4.13)

拡張Euclid互除法 (The Extended Eucliean Algorithm; EEA) の性質 (つづき)

- $f, g \in Z, f \ge g \ge 0$
- 剰余つき除算により、λ≧ 0 に対し、
 r₁,..., r_λ, r_{λ+1} および q₁,..., q_λをEA、EEAと同様に
 定める
- s₀,...,s_λ, s_{λ+1} および t₀,...,t_λ, t_{λ+1} をEEAと同様に
 定める

定理(6/17) r_i, q_i の定義

$$f=r_0, g=r_1,$$
 $r_0=r_1q_1+r_2 \quad (0< r_2< r_1),$ \vdots $r_{i-1}=r_iq_i+r_{i+1} \quad (0< r_{i+1}< r_i),$ \vdots $r_{\lambda-2}=r_{\lambda-1}q_{\lambda-1}+r_{\lambda} \quad (0< r_{\lambda}< r_{\lambda-1}),$ $r_{\lambda-1}=r_{\lambda}q_{\lambda} \quad (r_{\lambda+1}=0).$ $(g=0 \ \mathcal{O}$ とき $\lambda=0, \ g\neq 0 \ \mathcal{O}$ とき $\lambda>0)$

定理(6/17) s_i, t_iの定義

- $s_0 = 1, t_0 = 0$
- $s_1 = 0, t_1 = 1$
- $s_{i+1} = s_{i-1} s_i q_i$, $t_{i+1} = t_{i-1} t_i q_i$ $(i = 1, ..., \lambda)$

$$(r_{i+1}, s_{i+1}, t_{i+1}) = (r_{i-1}, s_{i-1}, t_{i-1}) - q_i(r_i, s_i, t_i)$$

- このとき、次が成り立つ:
 - a. $i = 0, ..., \lambda + 1$ に対し $t_i t_{i+1} \le 0$ かつ $|t_i| \le |t_{i+1}|$, $i = 0, ..., \lambda$ に対し $s_i s_{i+1} \le 0$ かつ $|s_i| \le |s_{i+1}|$.
 - b. $i = 0, ..., \lambda + 1$ に対し $r_{i-1}|t_i| \le a$ かつ $r_{i-1}|s_i| \le b$.

● 証明

a. (帰納法)

 t_i : i=0 のときは明らか.

0,...,iに対し主張が成り立つと仮定

 $t_{j+1} = t_{j-1} - t_j q_j$ に対し、帰納法の仮定より

 t_{i-1} と t_i は異なる符号を持ち、 $|t_i| \ge |t_{i-1}|$.

- 証明
 - a. (つづき)ゆえに

$$|t_{i+1}| = |t_{i-1}| + |t_i| q_i \ge |t_i|$$

かつ t_{j+1} の符号は t_j の符号と逆.

 s_i の場合も同様、ただし帰納法はi=1 から始める.

証明

b.
$$as_{i-1} + bt_{i-1} = r_{i-1}$$
 の両辺を t_i 倍 ... (1) $as_i + bt_i = r_i$ の両辺を t_{i-1} 倍 ... (2) (1) の両辺から (2) の両辺をそれぞれ引くと $a(s_{i-1}t_i - s_it_{i-1}) = t_i r_{i-1} - t_{i-1}r_i$ $a(-1)^{i-1} = t_i r_{i-1} - t_{i-1}r_i$ (定理 4.25, d. より) $\pm a = t_i r_{i-1} - t_{i-1}r_i$

証明

b. $\pm a = t_i r_{i-1} - t_{i-1} r_i$ ここで, a. より t_i と t_{i-1} が異なる符号を持つこと を用いると $a = |t_i r_{i-1} - t_{i-1} r_i| = |t_i r_{i-1}| + |t_{i-1} r_i| \ge |t_i r_{i-1}|$ s_i に対しても同様に示される

実数の連分数展開(§ 4.13)(p. 74)

- R: Euclid整域、K: Rの商体 R/R
 - 例: R=Z, K=Q
- $\frac{r_0}{r_1} \in K(r_0, r_1 \in R)$ に対し、次の計算による分数の列を考える:

- r₁/r₀の(正則)連分数展開
- ●「正則」の条件
 - \circ 分子が r_{k+1} を除いてすべて1
 - $\circ q_1 \subseteq Z$
 - \circ $q_2, ..., q_k$ は正整数

- $r_{k+1} = 0$ のとき $[q_1, q_2, ..., q_k]$
- 一般に $[q_1] = q_1$,

$$[q_1, q_2, \dots, q_k] = q_1 + \frac{1}{[q_2, \dots, q_k]}$$

• 連分数展開は $(q_i, r_{i+1}) \leftarrow r_{i+1} \div r_i \ (i = 1, ..., k)$ を求めるEuclid互除法によって求まる

例 4.89 (126/35の連分数展開)

126÷35 → (3,21) より

$$\frac{126}{35} = 3 + \frac{21}{35} = 3 + \frac{1}{\frac{35}{21}}$$

35÷21→(1,14)より

$$\frac{35}{21} = 1 + \frac{14}{21} = 1 + \frac{1}{\frac{21}{14}}$$

例 4.89 (126/35の連分数展開)

21÷14 → (1,7)より

$$\frac{21}{14} = 1 + \frac{7}{14} = 1 + \frac{1}{\frac{14}{7}}$$

14÷7 → (2,0) より

$$\frac{14}{7} = 2$$

例 4.89 (126/35の連分数展開)

よって、求める連分数展開は

$$\frac{126}{35} = 3 + \frac{21}{35} = 3 + \frac{1}{\frac{35}{21}}$$

$$= 3 + \frac{1}{1 + \frac{1}{\frac{21}{14}}} = 3 + \frac{1}{1 + \frac{1}{1 + \frac{1}{\frac{14}{7}}}}$$

$$= 3 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}} = [3, 1, 1, 2]$$

例 4.92 (無理数の連分数近似)

α∈Rの連分数近似を考える:

$$q_i = \lfloor \alpha_i \rfloor, \alpha_{i+1} = \frac{1}{\alpha_i - q_i}$$
 $(i = 1, 2, 3, \ldots)$

分子を1にする

例 4.92 (無理数の連分数近似)

$$\sqrt{3} = 1 + (\sqrt{3} - 1) = 1 + \frac{1}{\sqrt{3} - 1}$$

整数部分と小数部分に分離

分母を有理化

整数部分と小数部分に分離

$$= 1 + \frac{\sqrt{3} - 1}{2} = 1 + \frac{1}{\frac{2}{\sqrt{3} - 1}}$$

整数部分と小数部分に分離

分子を1にする

例 4.92 (無理数の連分数近似)

分母を有理化

$$\frac{2}{\sqrt{3}-1} = \left(\frac{2}{\sqrt{3}-1}\right) \left(\frac{\sqrt{3}+1}{\sqrt{3}+1}\right) = \frac{2(\sqrt{3}+1)}{2}$$

$$= \sqrt{3}+1 = 2+(\sqrt{3}+1-2) = 2+(\sqrt{3}-1)$$

$$= 2+\frac{1}{\frac{1}{\sqrt{3}-1}}$$
整数部分と小数部分に分離

分子を1にする

循環節が現れた!

$$\sqrt{3} = [1, 1, 2, 1, 2, 1, \ldots] = [1, \overline{1, 2}]$$

例 4.92 (無理数の連分数近似)

実数(無理数)αを循環連分数で表せる

$$\Leftrightarrow \quad \alpha = \frac{m \pm \sqrt{n}}{q} \quad (m, n, q \in \mathbb{Z})$$

(2次無理数:整係数2次方程式の根)

第9回のまとめ

- 拡張Euclid互除法の性質(つづき)
- (拡張) Euclid 互除法の応用
 - 有理数の連分数展開の計算
 - 無理数の連分数近似の計算

第10回の内容

- 拡張Euclid互除法の応用
 - 中国剰余算法 (§ 4.8)